• Home
  • Microsoft Exam Dumps
  • Why Choose Lead2pass?
  • Sitemap

Lead2pass New Updated IT Exam Questions

Exam collection of Micfosoft, Cisco,IBM,CompTIA and other IT exam

Menu
  • Home
  • Microsoft Exam Dumps
  • Why Choose Lead2pass?
  • Sitemap
 › 300-135 Exam Dumps › 300-135 Exam Questions › 300-135 New Questions › 300-135 PDF › 300-135 VCE › Cisco › [2017 New] Easily Pass 300-135 Exam With Lead2pass New Cisco 300-135 Brain Dumps (61-75)

[2017 New] Easily Pass 300-135 Exam With Lead2pass New Cisco 300-135 Brain Dumps (61-75)

admin August 1, 2017     Comment Closed    

2017 August Cisco Official New Released 300-135 Dumps in Lead2pass.com!

100% Free Download! 100% Pass Guaranteed!

I was very confused about selecting the best practice test website when preparing for my 300-135 certification exam. Luckly, a friend told me about Lead2pass.com. I passed the 300-135 exam from the first try. Excellent website for free exam dumps!

Following questions and answers are all new published by Cisco Official Exam Center: https://www.lead2pass.com/300-135.html

QUESTION 61
The implementations group has been using the test bed to do a `proof-of-concept’ that requires both Client 1 and Client 2 to access the WEB Server at 209.65.200.241. After several changes to the network addressing, routing scheme, DHCP services, NTP services, layer 2 connectivity, FHRP services, and device security, a trouble ticket has been opened indicating that Client 1 cannot ping the 209.65.200.241 address.
Use the supported commands to isolated the cause of this fault and answer the following questions.
What is the solution to the fault condition?

A.    In Configuration mode, using the interface range Fa 1/0/1 – 2, then no switchport port- security interface configuration commands.
Then in exec mode clear errdisable interface fa 1/01 – 2 vlan 10 command
B.    In Configuration mode, using the interface range Fa 1/0/1 – 2, then no switchport port- security, followed by shutdown, no shutdown interface configuration commands.
C.    In Configuration mode, using the interface range Fa 1/0/1 – 2, then no switchport port- security interface configuration commands.
D.    In Configuration mode, using the interface range Fa 1/0/1 – 2, then no switchport port- security interface configuration commands.
Then in exec mode clear errdisable interface fa 1/0/1, then clear errdisable interface fa 1/0/2 commands.

Answer: B
Explanation:
On ASW1, we need to remove port-security under interface fa1/0/1 & fa1/0/2.
http://www.cisco.com/en/US/tech/ABC389/ABC621/technologies_tech_note09186a00806c d87b.shtml

Ticket 8 : Redistribution of EIGRP to OSPF

Topology Overview (Actual Troubleshooting lab design is for below network design)

– Client Should have IP 10.2.1.3
– EIGRP 100 is running between switch DSW1 & DSW2
– OSPF (Process ID 1) is running between R1, R2, R3, R4
– Network of OSPF is redistributed in EIGRP
– BGP 65001 is configured on R1 with Webserver cloud AS 65002
– HSRP is running between DSW1 & DSW2 Switches

The company has created the test bed shown in the layer 2 and layer 3 topology exhibits.
This network consists of four routers, two layer 3 switches and two layer 2 switches.
In the IPv4 layer 3 topology, R1, R2, R3, and R4 are running OSPF with an OSPF process number 1.
DSW1, DSW2 and R4 are running EIGRP with an AS of 10. Redistribution is enabled where necessary.
R1 is running a BGP AS with a number of 65001. This AS has an eBGP connection to AS 65002 in the ISP’s network. Because the company’s address space is in the private range.
R1 is also providing NAT translations between the inside (10.1.0.0/16 & 10.2.0.0/16) networks and outside (209.65.0.0/24) network.
ASW1 and ASW2 are layer 2 switches.
NTP is enabled on all devices with 209.65.200.226 serving as the master clock source.
The client workstations receive their IP address and default gateway via R4’s DHCP server.
The default gateway address of 10.2.1.254 is the IP address of HSRP group 10 which is running on DSW1 and DSW2.
In the IPv6 layer 3 topology R1, R2, and R3 are running OSPFv3 with an OSPF process number 6.
DSW1, DSW2 and R4 are running RIPng process name RIP_ZONE.
The two IPv6 routing domains, OSPF 6 and RIPng are connected via GRE tunnel running over the underlying IPv4 OSPF domain. Redistrution is enabled where necessary.
Recently the implementation group has been using the test bed to do a `proof-of-concept’ on several implementations. This involved changing the configuration on one or more of the devices. You will be presented with a series of trouble tickets related to issues introduced during these configurations.

Note: Although trouble tickets have many similar fault indications, each ticket has its own issue and solution.

Each ticket has 3 sub questions that need to be answered & topology remains same.
Question-1 Fault is found on which device,
Question-2 Fault condition is related to,
Question-3 What exact problem is seen & what needs to be done for solution

Client is unable to ping IP 209.65.200.241

Solution:

Steps need to follow as below:
– When we check on client 1 & Client 2 desktop we are not receiving DHCP address from R4 ipconfig —– Client will be receiving IP address 10.2.1.3
– IP 10.2.1.3 will be able to ping from R4 , but cannot ping from R3, R2, R1
– This clearly shows problem at R4 since EIGRP is between DSW1, DSW2 & R4 and OSPF protocol is running between R4, R3, R2, R1 so routes from R4 are not propagated to R3, R2, R1
– Since R4 is able to ping 10.2.1.3 it means that routes are received in EIGRP & same needs to be advertised in OSPF to ping from R3, R2, R1.
– Need to check the routes are being advertised properly or not in OSPF & EIGRP vice-versa.

 

 

– From above snap shot it clearly indicates that redistribution done in EIGRP is having problem & by default all routes are denied from ospf to EIGRP… so need to change route-map name.

– Change required: On R4, in redistribution of EIGRP routing protocol, we need to change name of route-map to resolve the issue…

QUESTION 62
The implementations group has been using the test bed to do a `proof-of-concept’ that requires both Client 1 and Client 2 to access the WEB Server at 209.65.200.241. After several changes to the network addressing, routing scheme, DHCP services,
NTP services, layer 2 connectivity, FHRP services, and device security, a trouble ticket has been opened indicating that Client 1 cannot ping the 209.65.200.241 address.
Use the supported commands to isolated the cause of this fault and answer the following questions.
On which device is the fault condition located?

A.    R1
B.    R2
C.    R3
D.    R4
E.    DSW1
F.    DSW2
G.    ASW1
H.    ASW2

Answer: D
Explanation:
On R4, in the redistribution of EIGRP routing protocol, we need to change name of route- map to resolve the issue. It references route-map OSPF_to_EIGRP but the actual route map is called OSPF->EIGRP.

QUESTION 63
The implementations group has been using the test bed to do a `proof-of-concept’ that requires both Client 1 and Client 2 to access the WEB Server at 209.65.200.241. After several changes to the network addressing, routing scheme, DHCP services, NTP services, layer 2 connectivity, FHRP services, and device security, a trouble ticket has been opened indicating that Client 1 cannot ping the 209.65.200.241 address.
Use the supported commands to isolated the cause of this fault and answer the following questions.
The fault condition is related to which technology?

A.    NTP
B.    IP DHCP Server
C.    IPv4 OSPF Routing
D.    IPv4 EIGRP Routing
E.    IPv4 Route Redistribution
F.    IPv6 RIP Routing
G.    IPv6 OSPF Routing
H.    IPv4 and IPv6 Interoperability
I.    IPv4 layer 3 security

Answer: E
Explanation:
On R4, in the redistribution of EIGRP routing protocol, we need to change name of route- map to resolve the issue. It references route-map OSPF_to_EIGRP but the actual route map is called OSPF->EIGRP.

QUESTION 64
The implementations group has been using the test bed to do a `proof-of-concept’ that requires both Client 1 and Client 2 to access the WEB Server at 209.65.200.241. After several changes to the network addressing, routing scheme, DHCP services, NTP services, layer 2 connectivity, FHRP services, and device security, a trouble ticket has been opened indicating that Client 1 cannot ping the 209.65.200.241 address.
Use the supported commands to isolated the cause of this fault and answer the following questions.
Which is the solution to the fault condition?

A.    Under the EIGRP process, delete the redistribute ospf 1 route-map OSPF_ to_ EIGRP command and enter the redistribute ospf 1 route-map OSPF – > EIGRP command.
B.    Under the EIGRP process, delete the redistribute ospf 1 route-map OSPF_ to_ EIGRP command and enter the redistribute ospf 6 metric route-map OSPF – > EIGRP command.
C.    Under the OSPF process, delete the redistribute eigrp10 subnets route-map EIGPR – >OSPF command and enter the redistribute eigrp10 subnets route-map OSPF – > EIGRP command.
D.    Under the OSPF process, delete the redistribute eigrp10 subnets route-map EIGPR – >OSPF command and enter the redistribute eigrp10 subnets route-map EIGPR – > OSPF command.
E.    Under the EIGRP process, delete the redistribute ospf 1 route-map OSPF _to_ EIGRP command and enter redistribute ospf 1 metric 100000 100 100 1 15000 route_ map OSPF _to _EIGRP command

Answer: A
Explanation:
On R4, in the redistribution of EIGRP routing protocol, we need to change name of route- map to resolve the issue. It references route-map OSPF_to_EIGRP but the actual route map is called OSPF->EIGRP.

 

Ticket 9 : EIGRP AS number

Topology Overview (Actual Troubleshooting lab design is for below network design)

– Client Should have IP 10.2.1.3
– EIGRP 100 is running between switch DSW1 & DSW2
– OSPF (Process ID 1) is running between R1, R2, R3, R4
– Network of OSPF is redistributed in EIGRP
– BGP 65001 is configured on R1 with Webserver cloud AS 65002
– HSRP is running between DSW1 & DSW2 Switches

The company has created the test bed shown in the layer 2 and layer 3 topology exhibits.
This network consists of four routers, two layer 3 switches and two layer 2 switches.
In the IPv4 layer 3 topology, R1, R2, R3, and R4 are running OSPF with an OSPF process number 1.
DSW1, DSW2 and R4 are running EIGRP with an AS of 10. Redistribution is enabled where necessary.
R1 is running a BGP AS with a number of 65001. This AS has an eBGP connection to AS 65002 in the ISP’s network. Because the company’s address space is in the private range.
R1 is also providing NAT translations between the inside (10.1.0.0/16 & 10.2.0.0/16) networks and outside (209.65.0.0/24) network.
ASW1 and ASW2 are layer 2 switches.
NTP is enabled on all devices with 209.65.200.226 serving as the master clock source.
The client workstations receive their IP address and default gateway via R4’s DHCP server.
The default gateway address of 10.2.1.254 is the IP address of HSRP group 10 which is running on DSW1 and DSW2.
In the IPv6 layer 3 topology R1, R2, and R3 are running OSPFv3 with an OSPF process number 6.
DSW1, DSW2 and R4 are running RIPng process name RIP_ZONE.
The two IPv6 routing domains, OSPF 6 and RIPng are connected via GRE tunnel running over the underlying IPv4 OSPF domain. Redistrution is enabled where necessary.
Recently the implementation group has been using the test bed to do a `proof-of-concept’ on several implementations. This involved changing the configuration on one or more of the devices. You will be presented with a series of trouble tickets related to issues introduced during these configurations.

Note: Although trouble tickets have many similar fault indications, each ticket has its own issue and solution.

Each ticket has 3 sub questions that need to be answered & topology remains same.
Question-1 Fault is found on which device,
Question-2 Fault condition is related to,
Question-3 What exact problem is seen & what needs to be done for solution

Client is unable to ping IP 209.65.200.241

Solution:

Steps need to follow as below:
– When we check on client 1 & Client 2 desktop we are not receiving DHCP address from R4 ipconfig —– Client will be receiving IP address 10.2.1.3
– From Client PC we can ping 10.2.1.254
– But IP 10.2.1.3 is not able to ping from R4, R3, R2, R1
– This clearly shows problem at R4 Kindly check routes in EIGRP there are no routes of eigrp.
– Check the neighborship of EIGRP on R4; there are no neighbor seen from DSW1 & DSW2 check the running config of EIGRP protocol it shows EIGRP AS 1 process…. Now check on DSW1 & DSW2
On DSW1 only one Eigrp neighbour is there with DSW2 but its not with R4…

 

– From above snapshot & since R4 has EIGRP AS number 1 due to which neighbour is not happening.

– Change required: On R4, IPV4 EIGRP Routing, need to change the EIGRP AS number from 1 to 10 since DSW1 & DSW2 is having EIGRP AS number 10

QUESTION 65
The implementations group has been using the test bed to do a `proof-of-concept’ that requires both Client 1 and Client 2 to access the WEB Server at 209.65.200.241. After several changes to the network addressing, routing scheme, DHCP services, NTP services, layer 2 connectivity, FHRP services, and device security, a trouble ticket has been opened indicating that Client 1 cannot ping the 209.65.200.241 address.
Use the supported commands to isolated the cause of this fault and answer the following questions.
On which device is the fault condition located?

A.    R1
B.    R2
C.    R3
D.    R4
E.    DSW1
F.    DSW2
G.    ASW1
H.    ASW2

Answer: D
Explanation:
The EIGRP AS number configured on R4 is wrong.

QUESTION 66
The implementations group has been using the test bed to do a `proof-of-concept’ that requires both Client 1 and Client 2 to access the WEB Server at 209.65.200.241. After several changes to the network addressing, routing scheme, DHCP services, NTP services, layer 2 connectivity, FHRP services, and device security, a trouble ticket has been opened indicating that Client 1 cannot ping the 209.65.200.241 address.
Use the supported commands to isolated the cause of this fault and answer the following questions.
The fault condition is related to which technology?

A.    NTP
B.    IP DHCP Server
C.    IPv4 OSPF Routing
D.    IPv4 EIGRP Routing
E.    IPv4 Route Redistribution
F.    IPv6 RIP Routing
G.    IPv6 OSPF Routing
H.    IPv4 and IPv6 Interoperability
I.    IPv4 layer 3 security

Answer: D
Explanation:
On R4, IPV4 EIGRP Routing, need to change the EIGRP AS number from 1 to 10 since DSW1 & DSW2 is configured to be in EIGRP AS number 10.

QUESTION 67
The implementations group has been using the test bed to do a `proof-of-concept’ that requires both Client 1 and Client 2 to access the WEB Server at 209.65.200.241. After several changes to the network addressing, routing scheme, DHCP services, NTP services, layer 2 connectivity, FHRP services, and device security, a trouble ticket has been opened indicating that Client 1 cannot ping the 209.65.200.241 address.
Use the supported commands to isolated the cause of this fault and answer the following questions.
What is the solution to the fault condition?

A.    Disable auto summary on the EIGRP process
B.    Enable EIGRP on the FastEthernet0/0 and FastEthernet0/1 interface using the no passive-interface command.
C.    Change the AS number on the EIGRP routing process from 1 to 10 to much the AS number used on DSW1 and DSW2.
D.    Under the EIGRP process, delete the network 10.1.4.0 0.0.0.255 command and enter the network 10.1.4.4 0.0.0.252 and 10.1.4.8 0.0.0.252 commands.

Answer: C
Explanation:
On R4, IPV4 EIGRP Routing, need to change the EIGRP AS number from 1 to 10 since DSW1 & DSW2 is configured to be in EIGRP AS number 10.

Ticket 10 : VLAN Access Map
Topology Overview (Actual Troubleshooting lab design is for below network design)

– Client Should have IP 10.2.1.3
– EIGRP 100 is running between switch DSW1 & DSW2
– OSPF (Process ID 1) is running between R1, R2, R3, R4
– Network of OSPF is redistributed in EIGRP
– BGP 65001 is configured on R1 with Webserver cloud AS 65002
– HSRP is running between DSW1 & DSW2 Switches

The company has created the test bed shown in the layer 2 and layer 3 topology exhibits.
This network consists of four routers, two layer 3 switches and two layer 2 switches.
In the IPv4 layer 3 topology, R1, R2, R3, and R4 are running OSPF with an OSPF process number 1.
DSW1, DSW2 and R4 are running EIGRP with an AS of 10. Redistribution is enabled where necessary.
R1 is running a BGP AS with a number of 65001. This AS has an eBGP connection to AS 65002 in the ISP’s network. Because the company’s address space is in the private range.
R1 is also providing NAT translations between the inside (10.1.0.0/16 & 10.2.0.0/16) networks and outside (209.65.0.0/24) network.
ASW1 and ASW2 are layer 2 switches.
NTP is enabled on all devices with 209.65.200.226 serving as the master clock source.
The client workstations receive their IP address and default gateway via R4’s DHCP server.
The default gateway address of 10.2.1.254 is the IP address of HSRP group 10 which is running on DSW1 and DSW2.
In the IPv6 layer 3 topology R1, R2, and R3 are running OSPFv3 with an OSPF process number 6.
DSW1, DSW2 and R4 are running RIPng process name RIP_ZONE.
The two IPv6 routing domains, OSPF 6 and RIPng are connected via GRE tunnel running over the underlying IPv4 OSPF domain. Redistrution is enabled where necessary.
Recently the implementation group has been using the test bed to do a `proof-of-concept’ on several implementations. This involved changing the configuration on one or more of the devices. You will be presented with a series of trouble tickets related to issues introduced during these configurations.

Note: Although trouble tickets have many similar fault indications, each ticket has its own issue and solution.

Each ticket has 3 sub questions that need to be answered & topology remains same.
Question-1 Fault is found on which device,
Question-2 Fault condition is related to,
Question-3 What exact problem is seen & what needs to be done for solution

Client 1 is unable to ping IP 209.65.200.241

Solution:

Steps need to follow as below:
– When we check on client 1 & Client 2 desktop we are not receiving DHCP address from R4 ipconfig —– Client will be receiving IP address 10.2.1.3
– From Client PC we can ping 10.2.1.254….
– But IP 10.2.1.3 is not able to ping from R4, R3, R2, R1

 

 

Change required: On DSW1, VALN ACL, Need to delete the VLAN access-map test1 whose action is to drop access-list 10; specifically 10.2.1.3

QUESTION 68
The implementations group has been using the test bed to do a `proof-of-concept’ that requires both Client 1 and Client 2 to access the WEB Server at 209.65.200.241. After several changes to the network addressing, routing scheme, DHCP services, NTP services, layer 2 connectivity, FHRP services, and device security, a trouble ticket has been opened indicating that Client 1 cannot ping the 209.65.200.241 address.
Use the supported commands to isolated the cause of this fault and answer the following questions.
On which device is the fault condition located?

A.    R1
B.    R2
C.    R3
D.    R4
E.    DSW1
F.    DSW2
G.    ASW1
H.    ASW2

Answer: E
Explanation:
On DSW1, VALN ACL, Need to delete the VLAN access-map test1 whose action is to drop access-list 10; specifically 10.2.1.3

QUESTION 69
The implementations group has been using the test bed to do a `proof-of-concept’ that requires both Client 1 and Client 2 to access the WEB Server at 209.65.200.241. After several changes to the network addressing, routing scheme, DHCP services, NTP services, layer 2 connectivity, FHRP services, and device security, a trouble ticket has been opened indicating that Client 1 cannot ping the 209.65.200.241 address.
Use the supported commands to isolated the cause of this fault and answer the following questions.
The fault condition is related to which technology?

A.    NTP
B.    IP DHCP Helper
C.    IPv4 EIGRP Routing
D.    IPv6 RIP Routing
E.    IPv4 layer 3 security
F.    Switch-to-Switch Connectivity
G.    Loop Prevention
H.    Access Vlans
I.    Port Security
J.    VLAN ACL / Port ACL
K.    Switch Virtual Interface

Answer: J
Explanation:
On DSW1, VALN ACL, Need to delete the VLAN access-map test1 whose action is to drop access-list 10; specifically 10.2.1.3

QUESTION 70
The implementations group has been using the test bed to do a `proof-of-concept’ that requires both Client 1 and Client 2 to access the WEB Server at 209.65.200.241. After several changes to the network addressing, routing scheme, DHCP services, NTP services, layer 2 connectivity, FHRP services, and device security, a trouble ticket has been opened indicating that Client 1 cannot ping the 209.65.200.241 address.
Use the supported commands to isolated the cause of this fault and answer the following questions.
The fault condition is related to which technology?

A.    Under the global configuration mode enter no access-list 10 command.
B.    Under the global configuration mode enter no access-map vlan 10 command.
C.    Under the global configuration mode enter no vlan access-map test1 10 command.
D.    Under the global configuration mode enter no vlan filter test1 vlan-list 10 command.

Answer: C
Explanation:
On DSW1, VALN ACL, Need to delete the VLAN access-map test1 whose action is to drop access-list 10; specifically 10.2.1.3

Ticket 11 : IPV6 OSPF

Topology Overview (Actual Troubleshooting lab design is for below network design)

– Client Should have IP 10.2.1.3
– EIGRP 100 is running between switch DSW1 & DSW2
– OSPF (Process ID 1) is running between R1, R2, R3, R4
– Network of OSPF is redistributed in EIGRP
– BGP 65001 is configured on R1 with Webserver cloud AS 65002
– HSRP is running between DSW1 & DSW2 Switches

The company has created the test bed shown in the layer 2 and layer 3 topology exhibits.
This network consists of four routers, two layer 3 switches and two layer 2 switches.
In the IPv4 layer 3 topology, R1, R2, R3, and R4 are running OSPF with an OSPF process number 1.
DSW1, DSW2 and R4 are running EIGRP with an AS of 10. Redistribution is enabled where necessary.
R1 is running a BGP AS with a number of 65001. This AS has an eBGP connection to AS 65002 in the ISP’s network. Because the company’s address space is in the private range.
R1 is also providing NAT translations between the inside (10.1.0.0/16 & 10.2.0.0/16) networks and outside (209.65.0.0/24) network.
ASW1 and ASW2 are layer 2 switches.
NTP is enabled on all devices with 209.65.200.226 serving as the master clock source.
The client workstations receive their IP address and default gateway via R4’s DHCP server.
The default gateway address of 10.2.1.254 is the IP address of HSRP group 10 which is running on DSW1 and DSW2.
In the IPv6 layer 3 topology R1, R2, and R3 are running OSPFv3 with an OSPF process number 6.
DSW1, DSW2 and R4 are running RIPng process name RIP_ZONE.
The two IPv6 routing domains, OSPF 6 and RIPng are connected via GRE tunnel running over the underlying IPv4 OSPF domain. Redistrution is enabled where necessary.
Recently the implementation group has been using the test bed to do a `proof-of-concept’ on several implementations. This involved changing the configuration on one or more of the devices. You will be presented with a series of trouble tickets related to issues introduced during these configurations.

Note: Although trouble tickets have many similar fault indications, each ticket has its own issue and solution.

Each ticket has 3 sub questions that need to be answered & topology remains same.
Question-1 Fault is found on which device,
Question-2 Fault condition is related to,
Question-3 What exact problem is seen & what needs to be done for solution

 

Solution:

Steps need to follow as below:
– When we check on client 1 & Client 2 desktop we are not receiving DHCP address from R4 ipconfig —– Client will be receiving IP address 10.2.1.3
– From Client PC we can ping 10.2.1.254….
– But IP 10.2.1.3 is able to ping from R4, R3, R2, R1.
– Since the problem is R1 (2026::111:1) is not able to ping loopback of DSW1 (2026::102:1).
– Kindly check for neighbourship of routers as IPV6…. As per design below neighbourship should be present for IPV6
R1 —R2 — R3 — R4— DSW1 & DSW2 —– Neighbourship between devices of IPV6

 

R2 IPV6 OSPF neighbourship is with R1

 

R3 IPV6 OSPF neighbourship is with R4

 

 

– As per above snapshot we cannot see IPV6 neighbourship between R2 & R3 when checked interface configuration ipv6 ospf area 0 is missing on R2 which is connected to R3

– Change required: On R2, IPV6 OSPF routing, Configuration is required to add ipv6 ospf 6 area 0 under interface serial 0/0/0.23

QUESTION 71
The implementations group has been using the test bed to do a `proof-of-concept’. After several changes to the network addressing, routing schemes, a trouble ticket has been opened indicating that the loopback address on R1 (2026::111:1) is not able to ping the loopback address on DSW2(2026::102:1).
Use the supported commands to isolated the cause of this fault and answer the following questions.
On which device is the fault condition located?

A.    R1
B.    R2
C.    R3
D.    R4
E.    DSW1
F.    DSW2
G.    ASW1
H.    ASW2

Answer: B
Explanation:
R2 is missing the needed IPV6 OSPF for interface s0/0/0.23

QUESTION 72
The implementations group has been using the test bed to do a `proof-of-concept’. After several changes to the network addressing, routing schemes, a trouble ticket has been opened indicating that the loopback address on R1 (2026::111:1) is not able to ping the loopback address on DSW2(2026::102:1).
Use the supported commands to isolated the cause of this fault and answer the following questions.
The fault condition is related to which technology?

A.    NTP
B.    IPv4 OSPF Routing
C.    IPv6 OSPF Routing
D.    IPv4 layer 3 security

Answer: C
Explanation:
On R2, IPV6 OSPF routing, configuration is required to add ipv6 ospf 6 area 0 under interface serial 0/0/0.23

QUESTION 73
The implementations group has been using the test bed to do a `proof-of-concept’. After several changes to the network addressing, routing schemes, a trouble ticket has been opened indicating that the loopback address on R1 (2026::111:1) is not able to ping the loopback address on DSW2(2026::102:1).
Use the supported commands to isolated the cause of this fault and answer the following questions.
What is the solution to fault condition?

A.    Under the interface Serial 0/0/0.23 configuration enter the ipv6 ospf 6 area 0 command.
B.    Under the interface Serial0/0/0.12 configuration enter the ipv6 ospf 6 area 12 command.
C.    Under ipv6 router ospf 6 configuration enter the network 2026::1:/122 area 0 command.
D.    Under ipv6 router ospf 6 configuration enter no passive-interface default command.

Answer: A
Explanation:
On R2, IPV6 OSPF routing, configuration is required to add ipv6 ospf 6 area 0 under interface serial 0/0/0.23

Ticket 12 : HSRP Issue

Topology Overview (Actual Troubleshooting lab design is for below network design)

– Client Should have IP 10.2.1.3
– EIGRP 100 is running between switch DSW1 & DSW2
– OSPF (Process ID 1) is running between R1, R2, R3, R4
– Network of OSPF is redistributed in EIGRP
– BGP 65001 is configured on R1 with Webserver cloud AS 65002
– HSRP is running between DSW1 & DSW2 Switches

The company has created the test bed shown in the layer 2 and layer 3 topology exhibits.
This network consists of four routers, two layer 3 switches and two layer 2 switches.
In the IPv4 layer 3 topology, R1, R2, R3, and R4 are running OSPF with an OSPF process number 1.
DSW1, DSW2 and R4 are running EIGRP with an AS of 10. Redistribution is enabled where necessary.
R1 is running a BGP AS with a number of 65001. This AS has an eBGP connection to AS 65002 in the ISP’s network. Because the company’s address space is in the private range.
R1 is also providing NAT translations between the inside (10.1.0.0/16 & 10.2.0.0/16) networks and outside (209.65.0.0/24) network.
ASW1 and ASW2 are layer 2 switches.
NTP is enabled on all devices with 209.65.200.226 serving as the master clock source.
The client workstations receive their IP address and default gateway via R4’s DHCP server.
The default gateway address of 10.2.1.254 is the IP address of HSRP group 10 which is running on DSW1 and DSW2.
In the IPv6 layer 3 topology R1, R2, and R3 are running OSPFv3 with an OSPF process number 6.
DSW1, DSW2 and R4 are running RIPng process name RIP_ZONE.
The two IPv6 routing domains, OSPF 6 and RIPng are connected via GRE tunnel running over the underlying IPv4 OSPF domain. Redistrution is enabled where necessary.
Recently the implementation group has been using the test bed to do a `proof-of-concept’ on several implementations. This involved changing the configuration on one or more of the devices. You will be presented with a series of trouble tickets related to issues introduced during these configurations.

Note: Although trouble tickets have many similar fault indications, each ticket has its own issue and solution.

Each ticket has 3 sub questions that need to be answered & topology remains same.
Question-1 Fault is found on which device,
Question-2 Fault condition is related to,
Question-3 What exact problem is seen & what needs to be done for solution

 

Solution:

Steps need to follow as below:Since the problem is raised that DSW1 will not become active router for HSRP group 0 we will check for the HSRP configuration…

 

 

 

 

 

– From snapshot we see that the track command given needs to be changed under active VLAN10 router

– Change Required: On DSW1, related to HSRP, under vlan 10 change the given track 1 command to instead use the track 10 command.

QUESTION 74
The implementations group has been using the test bed to do a `proof-of-concept’ that requires both Client 1 and Client 2 to access the WEB Server at 209.65.200.241. After several changes to the network addressing, routing schemes, DHCP services, NTP services, layer 2 connectivity, FHRP services, and device security, a trouble ticket has been opened DSW1 will not become the active router for HSRP group 10.
Use the supported commands to isolated the cause of this fault and answer the following questions.
On which device is the fault condition located?

A.    R1
B.    R2
C.    R3
D.    R4
E.    DSW1
F.    DSW2
G.    ASW1
H.    ASW2

Answer: E
Explanation:
DSW references the wrong track ID number.

QUESTION 75
The implementations group has been using the test bed to do a `proof-of-concept’ that requires both Client 1 and Client 2 to access the WEB Server at 209.65.200.241. After several changes to the network addressing, routing schemes, DHCP services, NTP services, layer 2 connectivity, FHRP services, and device security, a trouble ticket has been opened DSW1 will not become the active router for HSRP group 10.
Use the supported commands to isolated the cause of this fault and answer the following questions.
The fault condition is related to which technology?

A.    NTP
B.    HSRP
C.    IP DHCP Helper
D.    IPv4 EIGRP Routing
E.    IPv6 RIP Routing
F.    IPv4 layer 3 security
G.    Switch-to-Switch Connectivity
H.    Loop Prevention
I.    Access Vlans

Answer: B
Explanation:
On DSW1, related to HSRP, under VLAN 10 change the given track 1 command to instead use the track 10 command.

Thanks for the high quality 300-135 study guide. Will be back soon for more dumps.

300-135 new questions on Google Drive: https://drive.google.com/open?id=0B3Syig5i8gpDRnY1enRHb3hVeDQ

2017 Cisco 300-135 exam dumps (All 110 Q&As) from Lead2pass:

https://www.lead2pass.com/300-135.html [100% Exam Pass Guaranteed]

300-135 Exam Dumps 300-135 Exam Questions 300-135 New Questions 300-135 PDF 300-135 VCE Cisco
300-135 braindumps300-135 exam dumps300-135 exam question300-135 pdf dumps300-135 practice test300-135 study guide300-135 vce dumpsLead2pass 300-135

 Previous Post

[2017 New] Easily Pass 300-115 Exam With Lead2pass New 300-115 VCE And PDF Dumps (251-275)

― August 1, 2017

Next Post 

[2017 New] Easily Pass 300-135 Exam With Lead2pass New Cisco 300-135 Brain Dumps (76-90)

― August 1, 2017

Author: admin

Related Articles

admin ― May 18, 2018 | Comment Closed

[May 2018] 2018 New Released Cisco 300-135 Exam Dumps Free Download In Lead2pass 195q

2018 Updated Lead2pass Cisco 300-135 Exam Questions: https://www.lead2pass.com/300-135.html QUESTION 41The implementations group has been using the test bed to do

admin ― April 4, 2018 | Comment Closed

[April 2018] Try Lead2pass Latest Cisco 300-135 Dumps To Pass The Exam Successfully 181q

admin ― February 22, 2018 | Comment Closed

[February 2018] 2018 Latest Updated 300-135 Dumps Free Download In Lead2pass 137q

admin ― January 11, 2018 | Comment Closed

[January 2018] Updated 300-135 New Questions From Lead2pass Free Downloading 137q

admin ― August 1, 2017 | Comment Closed

[2017 New] Easily Pass 300-135 Exam With Lead2pass New Cisco 300-135 Brain Dumps (76-90)

admin ― July 11, 2017 | Comment Closed

[2017 New] Quickly Pass 300-135 Test With Lead2pass New 300-135 Brain Dumps (46-60)

admin ― July 11, 2017 | Comment Closed

[2017 New] Quickly Pass 300-135 Test With Lead2pass New 300-135 Brain Dumps (31-45)

admin ― July 11, 2017 | Comment Closed

[2017 New] Quickly Pass 300-135 Test With Lead2pass New 300-135 Brain Dumps (16-30)

Categories

Premium VCE Test Engine

VCE Exam Simulator for Mobile

Take exams on your mobile device the same way you do on your desktop. iPhone, iPad and Android devices are supported.

Hottest Microsoft Exam Dumps

HOTMicrosoft 70-243 Dumps ➤ PDF & VCE
HOTMicrosoft 70-246 Dumps ➤ PDF & VCE
HOTMicrosoft 70-247 Dumps ➤ PDF & VCE
HOTMicrosoft 70-331 Dumps ➤ PDF & VCE
HOTMicrosoft 70-332 Dumps ➤ PDF & VCE
HOTMicrosoft 70-333 Dumps ➤ PDF & VCE
HOTMicrosoft 70-341 Dumps ➤ PDF & VCE
HOTMicrosoft 70-342 Dumps ➤ PDF & VCE
HOTMicrosoft 70-346 Dumps ➤ PDF & VCE
HOTMicrosoft 70-347 Dumps ➤ PDF & VCE
HOTMicrosoft 70-410 Dumps ➤ PDF & VCE
HOTMicrosoft 70-411 Dumps ➤ PDF & VCE
HOTMicrosoft 70-412 Dumps ➤ PDF & VCE
HOTMicrosoft 70-413 Dumps ➤ PDF & VCE
HOTMicrosoft 70-414 Dumps ➤ PDF & VCE
HOTMicrosoft 70-417 Dumps ➤ PDF & VCE
HOTMicrosoft 70-457 Dumps ➤ PDF & VCE
HOTMicrosoft 70-458 Dumps ➤ PDF & VCE
HOTMicrosoft 70-461 Dumps ➤ PDF & VCE
HOTMicrosoft 70-462 Dumps ➤ PDF & VCE
HOTMicrosoft 70-463 Dumps ➤ PDF & VCE
HOTMicrosoft 70-464 Dumps ➤ PDF & VCE
HOTMicrosoft 70-465 Dumps ➤ PDF & VCE
HOTMicrosoft 70-466 Dumps ➤ PDF & VCE
HOTMicrosoft 70-467 Dumps ➤ PDF & VCE
HOTMicrosoft 70-469 Dumps ➤ PDF & VCE
HOTMicrosoft 70-480 Dumps ➤ PDF & VCE
HOTMicrosoft 70-481 Dumps ➤ PDF & VCE
HOTMicrosoft 70-482 Dumps ➤ PDF & VCE
HOTMicrosoft 70-483 Dumps ➤ PDF & VCE
HOTMicrosoft 70-486 Dumps ➤ PDF & VCE
HOTMicrosoft 70-487 Dumps ➤ PDF & VCE
HOTMicrosoft 70-488 Dumps ➤ PDF & VCE
HOTMicrosoft 70-489 Dumps ➤ PDF & VCE
HOTMicrosoft 70-511 Dumps ➤ PDF & VCE
HOTMicrosoft 70-513 Dumps ➤ PDF & VCE
HOTMicrosoft 70-515 Dumps ➤ PDF & VCE
HOTMicrosoft 70-532 Dumps ➤ PDF & VCE
HOTMicrosoft 70-533 Dumps ➤ PDF & VCE
HOTMicrosoft 70-534 Dumps ➤ PDF & VCE
HOTMicrosoft 70-640 Dumps ➤ PDF & VCE
HOTMicrosoft 70-642 Dumps ➤ PDF & VCE
HOTMicrosoft 70-646 Dumps ➤ PDF & VCE
HOTMicrosoft 70-687 Dumps ➤ PDF & VCE
HOTMicrosoft 70-688 Dumps ➤ PDF & VCE
HOTMicrosoft 70-689 Dumps ➤ PDF & VCE
HOTMicrosoft 70-692 Dumps ➤ PDF & VCE
HOTMicrosoft 70-695 Dumps ➤ PDF & VCE
HOTMicrosoft 70-696 Dumps ➤ PDF & VCE
HOTMicrosoft 70-697 Dumps ➤ PDF & VCE
HOTMicrosoft 74-335 Dumps ➤ PDF & VCE
HOTMicrosoft 74-338 Dumps ➤ PDF & VCE
HOTMicrosoft 74-343 Dumps ➤ PDF & VCE
HOTMicrosoft 74-344 Dumps ➤ PDF & VCE
HOTMicrosoft 74-409 Dumps ➤ PDF & VCE
HOTMicrosoft 98-361 Dumps ➤ PDF & VCE
HOTMicrosoft 98-367 Dumps ➤ PDF & VCE
HOTMB2-700 Dumps ➤ PDF & VCE
HOTMB2-701 Dumps ➤ PDF & VCE
HOTMB2-702 Dumps ➤ PDF & VCE
HOTMB2-703 Dumps ➤ PDF & VCE
GetAll List Of Microsoft Dumps NOW

Hottest Cisco Exam Dumps

HOTCisco 200-120 Dumps ➤ PDF & VCE
HOTCisco 100-101 Dumps ➤ PDF & VCE
HOTCisco 200-101 Dumps ➤ PDF & VCE
HOTCisco 200-310 Dumps ➤ PDF & VCE
HOTCisco 200-355 Dumps ➤ PDF & VCE
HOTCisco 200-401 Dumps ➤ PDF & VCE
HOTCisco 210-260 Dumps ➤ PDF & VCE
HOTCisco 210-060 Dumps ➤ PDF & VCE
HOTCisco 210-065 Dumps ➤ PDF & VCE
HOTCisco 300-101 Dumps ➤ PDF & VCE
HOTCisco 300-115 Dumps ➤ PDF & VCE
HOTCisco 300-135 Dumps ➤ PDF & VCE
HOTCisco 300-206 Dumps ➤ PDF & VCE
HOTCisco 300-207 Dumps ➤ PDF & VCE
HOTCisco 300-208 Dumps ➤ PDF & VCE
HOTCisco 300-209 Dumps ➤ PDF & VCE
HOTCisco 300-070 Dumps ➤ PDF & VCE
HOTCisco 300-075 Dumps ➤ PDF & VCE
HOTCisco 300-080 Dumps ➤ PDF & VCE
HOTCisco 300-085 Dumps ➤ PDF & VCE
HOTCisco 400-101 Dumps ➤ PDF & VCE
HOTCisco 400-201 Dumps ➤ PDF & VCE
HOTCisco 400-051 Dumps ➤ PDF & VCE
HOTCisco 350-018 Dumps ➤ PDF & VCE
HOTCisco 642-035 Dumps ➤ PDF & VCE

Hottest CompTIA Exam Dumps

HOTSY0-401 Dumps ➤ PDF & VCE
HOTN10-006 Dumps ➤ PDF & VCE
HOT220-901 Dumps ➤ PDF & VCE
HOT220-902 Dumps ➤ PDF & VCE
HOTSG0-001 Dumps ➤ PDF & VCE
HOTCAS-002 Dumps ➤ PDF & VCE
HOTSK0-004 Dumps ➤ PDF & VCE

Other Hottest Exam Dumps

HOTVMware VCP550 Dumps ➤ PDF & VCE
HOTVMware VCP550D Dumps ➤ PDF & VCE
HOTVMware 1V0-601 Dumps ➤ PDF & VCE
HOTVMware 2V0-620 Dumps ➤ PDF & VCE
HOTVCP5-DCV Dumps ➤ PDF & VCE
HOTISC CISSP Dumps ➤ PDF & VCE
HOTPMI PMP Dumps ➤ PDF & VCE
HOTOracle 1Z0-051 Dumps ➤ PDF & VCE
HOTOracle 1Z0-052 Dumps ➤ PDF & VCE
HOTOracle 1Z0-060 Dumps ➤ PDF & VCE
HOTOracle 1Z0-061 Dumps ➤ PDF & VCE
HOTCitrix 1Y0-201 Dumps ➤ PDF & VCE
HOTCitrix 1Y0-301 Dumps ➤ PDF & VCE
HOTCitrix 1Y0-401 Dumps ➤ PDF & VCE
HOT312-50v9 Dumps ➤ PDF & VCE
HOTRHCSA EX200 Dumps ➤ PDF & VCE
HOTRHCE EX300 Dumps ➤ PDF & VCE

Archives

Tags

100-105 exam dumps 200-125 braindumps 200-125 exam dumps 200-125 exam question 200-125 pdf dumps 200-125 practice test 200-125 study guide 200-125 vce dumps 200-355 braindumps 200-355 exam dumps 200-355 exam question 200-355 pdf dumps 200-355 practice test 200-355 study guide 200-355 vce dumps 220-901 braindumps 220-901 exam dumps 220-901 exam question 220-901 pdf dumps 220-901 practice test 220-901 study guide 220-901 vce dumps 300-101 braindumps 300-101 exam dumps 300-101 exam question 300-101 pdf dumps 300-101 practice test 300-101 study guide 300-101 vce dumps 400-101 braindumps 400-101 exam dumps 400-101 exam question 400-101 pdf dumps 400-101 practice test 400-101 study guide 400-101 vce dumps 400-251 braindumps 400-251 exam dumps 400-251 exam question 400-251 pdf dumps 400-251 practice test 400-251 study guide 400-251 vce dumps Lead2pass 220-901 Lead2pass 400-101